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Abstract 
We develop a numerical model for the 
prediction of the microstructure formation and 
deformation behaviour of an Fe-C alloy by   
coupling the phase-field (PF) method with the 
finite element method based on the 
homogenization method (FEH). The PF 
simulation clarifies the growth of the ferrite 
phase during the ����� transformation in the 
Fe-C alloy. The FEH analysis employs the 
morphology of the � phase and is used to 
evaluate the mechanical properties of the Fe-C 
alloy. Furthermore, the FEH analysis is 
performed to investigate the effects of the 

configuration of microstructures on the 
deformation behaviour. The results show that 
the deformation behaviour dependence on the 
morphology of the � phase is quantitatively in 
agreement with experimental results. This study 
suggests the applicability of  the proposed 
model, which enables us to systematically 
evaluate the mechanical properties of the Fe-C 
alloy accompanying with the morphological 
change of the microstructures.   
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1 Introduction 
The mechanical properties of steels, such as 
tensile strength, ductility and toughness, are 
related to their inhomogeneous microscopic 
deformation behaviour. The deformation 
behaviour in the microscopic region is largely 
characterized not only by that volume fraction 
of the constituent phases, but also the 
morphology of the microstructure that is 
formed during phase transformations or 
precipitation. For simple carbon steel or an 
Fe-C alloy, it is well known that the 
microstructure can consist of any of the 
austenite, ferrite, pearlite, bainite and 
martensite. These component microstructures 
exhibit various morphologies and affect the 
mechanical behaviour [1]. For example, in the 
ferrite-pearlite steel, the configuration of a 
softer ferrite (�) phase strongly influences the 
ductility and toughness of the steel. Because of 
the above reasons, to efficiently control the 
mechanical properties of steels or alloys, it is 
essential to develop a numerical model to 
predict the microstructural formation and 
systematically clarify the relationship between 
the morphology of the microstructure and the 
micro- and macroscale deformation behaviour.  

Time-dependent Ginzburg-Landau (TDGL) 
theory and phase-field (PF) theory  have been 
proposed as powerful tools for the prediction of 
microstructural evolution [2]. The PF approach 
has an advantage that it can simulate the 
evolution of microstructures without explicit 
tracking of the position of the interface. 
Furthermore, in terms of the evaluation of the 
mechanical properties of materials, the 
two-scale finite element method using  
homogenization theory (FEH) has attracted 
attention as an excellent numerical technique 
for the investigation of the micro- and 

macroscopic deformation behaviour of 
materials [3, 4]. These numerical models have 
been applied to Fe-based alloys. However, 
according to the author’s knowledge, there has 
been no integrated numerical study using both 
the PF method and FEH analysis for the 
microstructure and mechanical modelling of 
Fe-based alloys.  
In the present study, the main purpose is to 
develop an integrated numerical model for the 
microstructure design of the Fe-C alloy by 
coupling the PF method with FEH analysis. 
Using our proposed simulation model, we 
systematically investigate the mechanical 
properties of the Fe-C alloy taking into account 
the morphological change of the 
microstructure.   We first simulate the 
evolution of the ��phase due to the 
austenite-to-ferrite (���) transformation below
the Ae3 temperature by the PF method. Then, 
elastic-plastic FEH analysis is performed using 
an unit-cell that represents the simulated 
microstructure in the PF simulation. Through 
this procedure, we investigate the distribution 
of the internal stress-strain field in the 
microstructure and the effects of the 
morphological change of the � phase on the 
mechanical properties of the Fe-C alloy.  
 
2 Phase-Field Method of the Austenite 
to Ferrite Transformation in Fe-C Alloy 
For the formation of the microstructure in the 
Fe-C alloy, the authors proposed the PF model 
for the ��� transformation and the 
morphological change of the ferrite phase [5]. 
The PF model for the ��� transformation is 
summarized below.  
The TDGL equation, which describes the 
evolution of microstructure during the ��� 
transformation, is derived by assuming that the 
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total free energy of the Fe-C alloy decreases 
monotonically with time. The total free energy 
of the Fe-C alloy is defined by the 
Ginzburg-Landau-type Gibbs free energy 
functional as follows:  

� � � � dVTugG
V C�
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where the first and second terms of Eqn.(1) are 
the chemical free energy density and the 
gradient energy density, respectively. Here, � is 
the nonconserved order parameter, phase field, 
defined as � = 1 in the � phase and � = 0 in the 
austenite phase. uC is the carbon concentration 
related to the normal mole fraction of a carbon 
atom. T denotes temperature.  
The chemical free energy density of the Fe-C 
alloy is postulated to be of the following form.  
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Here, g�(uC, T) and g�(uC, T) are the chemical 
free energy densities of the pure ���phase and 
pure austenite phase, respectively. These 
chemical free energy densities are obtained 
from the literature [6]. Also, p(�) = �2�(10-15�� 

+6���2), q(�) = �2 (1-��)2 and W are the free 
energy density function, the double-well 
potential function and the height of the 
potential, respectively. In the gradient term of 
the total free energy, ��(�) is the gradient 
energy coefficient, which describes the 
interfacial anisotropy and is related to the 
interfacial energy � and the interfacial 
thickness ���as follows. ��
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b
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Here, �, k, ��and���0 are the strength of the 
anisotropy, the mode number of the anisotropy, 
the angle between the interfacial normal and 
the x-axis and the preferential growth 

orientation, respectively. In this study, we 
employ the following regularized gradient 
energy coefficient in the case of a high 
interfacial anisotropy such as � > 1/(k2-1) [7]:  
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Here, ��m is defined as the first missing 
orientation.  
The governing equations for the phase field � 
and the carbon concentration uC are derived 
from the TDGL equations using the total free 
energy of the Fe-C alloy as follows: 
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where M� is the kinetic parameter for �& which 
is related to the mobility of the �/�� interface M 
�����as [8]:   

0
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DC(uC, T) is the parameter for the carbon 
concentration, which is related to p(�) and the 
concentration- and temperature-dependent 
mobilities of the carbon atoms in the 
constituent phases as follows [9, 10]:  
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3 Finite Element Method Based on the 
Two-Scale Homogenization Method 
In order to investigate the deformation 
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properties of the Fe-C alloy foe different 
microstructures, large-deformation FEH 
analysis is performed in two-dimensions. In 
this analysis, we consider the Fe-C alloy as a 
ferrite-pearlite two-phase alloy. The microscale 
distribution of the constituent phases in the 
steel is determined from the PF simulations and
is described using the unit-cell, as mentioned in 
the following section.  
The Fe-C alloy is considered to be an isotropic 
elastic-plastic material and its deformation 
behavior is characterized by J2 flow theory. 
Therefore, we employ the Plandtl-Reuss 
equation as the constitutive equation, that is, 
the relationship between the Jaumann rate of 

the Kirchhoff stress ijS
�

and the strain 

rate ij�� [11]:  
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where De
ijkl, �’ij and �eq are the elastic 

coefficient matrix, the deviatric stress tensor 
and the equivalent stress, respectively. H’ is the 
plastic tangent modulus. Using this constitutive 
equation, we solve the two-scale elastic-plastic 
boundary value problem by the FEH method 
[4].  
 
4 Computational Model  
Figure 1 (a) shows the computational model, 
initial condition and boundary condition for the 
PF simulation. The size of the computational 
domain is 5 × 6 /m2 and the zero Neumann 
boundary condition is employed. In the PF 
simulation, we simulate the evolution and 
morphological change of the preexisting � 
phase at the austenite grain boundary, i.e., the 
grain boundary allotriomorph ferrite (�A). 

Therefore, assuming that the �A is nucleated at 
the hexagonal austenite grain boundary, we set
the initial � phase in the computational domain. 
The initial concentration is supersaturated in 
the austenite matrix and at equilibrium in the � 
phase. Since we simulate the isothermal 
transformation, the temperature is set to be 
constant at T = 1000 K. Although the growth 
direction of the � phase depends on the 
Kurdjumov-Sachs orientation relationship 
between the � phase and the � phase, we define 
the growth directions of the � phase with the 
preferential growth orientation ��0. Other 
interfacial parameters and physical values in 
this study are given as follows [5]: the average 
interfacial energy is � = 1.0 J/m2, the mode 
number of interfacial anisotropy is k = 2 and 
the interfacial thickness is � = 93.7 nm. Figures 
1 (b) and (c) illustrate the computational 
models for the FEH analysis. xi and yi (i = 1, 2) 
indicate the coordinates in the macro- and 
microscopic regions, respectively. As shown in 
Fig. 1 (b), the microstructure in the Fe-C alloy 
is represented by the periodic arrangement of 
hexagonal unit-cells and the periodic boundary 
condition is employed for the unit-cells [12]. 
The unit-cell is modeled from the PF 
simulations. In order to study the deformation 
behavior under tensile deformation, a uniform 
tensile deformation is applied to the Fe-C alloy 
at a strain rate of 0� = 10-3 /s. 
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Figure 1.  Computational models and initial 
conditions for (a) PF simulation and FEH 
analysis in (b) micro- and (c) macroscopic 

regions. 
 

5 Results and Discussion 
5.1 Microstructural evolution during 
isothermal ��/ �� � transformation 
The evolution of the � phase due to the 
isothermal �/�� transformation is simulated. 
Here, we investigate the effects of interfacial 
anisotropy on the morphological change of the 
� phase.  
Figure 2 shows the distribution of carbon 
concentration during the evolution of the � 
phase for � = 0.2. We can observe that the 
initial �/� interface migrates with carbon 
diffusion to the austenite matrix. It is also 
found that low interfacial anisotropy induces 
the growth of the �A. We note that the 

interfacial migration behaviour with carbon 
diffusion and the build-up of carbon 
concentration in front of the moving interface 
can be simulated by the PF method.  
On the other hand, as shown in Fig.3, many 
Widmanstätten ferrite (�w) plates nucleate and 
grow from the initial �A in the case of the 
higher strength of anisotropy � = 0.5. Here, the 
preferential growth direction of the � phase, 
�1�& is the same as the case of Fig.2. From this 
result, the �w growth mechanism can be 
described as follows: (i) the initial �w tips are 
nucleated on the interface of the��A, as shown 
in Fig.3 (a). In particular, the convex part of the 
initial interface is the preferential growth part 
of �w. (ii) Some initial �w tips coalesce into 
neighbouring tips and grow competitively 
toward the �w plate.  (iii) After the 
coalescence, each �w plate evolves at a 
constant rate. Additionally, the rate of ��� 
interface migration during the growth of �w 
plates is clearly faster than that of �A formation. 
Note that the simulated growth mechanism of 
the �w plates is similar to the diffusional 
ledge-wise growth mechanism [13]. 
Furthermore, the experimentally observed 
morphology of the �w plate, such as the parallel 
broad sides and the fine shape of the tip, can be 
simulated by employing the gradient energy 
coefficient [14]. 
Figure 4 shows the evolution of the �w plate for 
� = 0.4. We define �1��so as to simulate the 
growth of the �w plate from one part of the 
interface on the �A. It is clearly observed that 
the coarse-grain �w plate is so large that it 
grows across the � grain. The growth rate of �w 
plates decreases with decreasing the strength of 
anisotropy.  
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Figure 2.  Growth of allotriomorph ferrite for 
strength of anisotropy � = 0.2. 

 

 
 

Figure 3.  Growth of Widmanstätten ferrite 
for strength of anisotropy � = 0.5. 

 
 

5.2 Unit-cell models for FEH analysis 
Figure 5 illustrates the unit-cell models with 
different morphologies and volume fractions of 
the � phase. The total numbers of nodes and 
crossed-triangle elements of the unit-cell are 
also indicated. The unit-cell model is produced 
by employing the digital–image based 
modelling method using the image-data 
obtained by the PF simulation [15]. Here, (a) 
PFA-26, (b) PFW-57 and (c) PFL-54 
correspond to the microstructures shown in 
Fig.2 (d) (�A structure), Fig.3 (d) (fine-grained 
�w structure) and Fig.4 (d) (coarse-grained �w 
structure), respectively. As mentioned above, 
we consider the Fe-C alloy as the 
ferrite-pearlite two-phase steel. Therefore, we 
assume that the untransformed austenite phase 
in the PF simulation decomposes into pearlite 
during the subsequent cooling process. The 
distribution of the constituent phase is 
determined using the profile of the phase field 
��= 0.5, and the physical parameters are 
defined for each crossed-triangle finite element. 
The white and black areas in the unit-cell 
correspond to the pearlite and the � phases, 
respectively. The mechanical property of the 
pearlite depends on the ferrite-cementite 
lamellar spacing. However, in this study, we 
assume that the pearlite has an uniform 
structure. Accordingly, the initial yield stress of 
the constituent phase is � y = 409 MPa for the 
� phase and ��y = 490 MPa for the pearlite. 
The Young’s modulus of the Fe-C alloy is E = 
206 GPa and the Poisson’s ratio is 2 = 0.3 [16].  
 
5.3 Effects of morphology of ferrite phase on 
mechanical properties of Fe-C alloy 
We perform FEH analysis using the unit-cell 
models to clarify the effects of the 
morphological change of the microstructure on  
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Figure 4.  Growth of Widmanstätten ferrite 
across the pior-austenite grain for strength of 

anisotropy � = 0.4. 

 
the mechanical properties of the Fe-C alloy. 
Figure 6 illustrates the macroscopic nominal 
stress-nominal strain relationships for the 
Fe-C alloy containing different simulated 
microstructures. Although the strain hardening 
behaviour of all alloys is similar, we can 
observe that the maximum stress decreases 
with increasing volume fraction of the softer � 
phase. This volume-fraction-dependent 
behaviour is similar to that found in the 
experimental study [16]. However, the increase 
the yield stress and the strain hardening 
properties due to the formation of a 
fine-grained � structure cannot be simulated, 
because we do not consider the grain-size 
effect in this analysis. In a future study, we will  

 
 

Figure 5.  Unit-cell models with different 
morphologies and volume fractions of ferrite 
phase: (a) allotriomorph ferrite, (b) fine- and 

(c) coarse-grained Widmanstätten ferrite plates.  
 
simulate the size-dependent deformation 
behaviour using crystal plasticity theory [17].  
Figure 7 shows the evolution of the microscale 
equivalent plastic strain in the unit-cell for (a) 
PFA-26, (b) PFW-57 and (c) PFL-54, for the 
macroscopic nominal strains 0�n =0.1, 0.2 and 
0.3. As shown in the figure, it is clear that the 
plastic deformation distribution is rather 
inhomogeneous and depends on the 
morphology of the � phase. In the case that the 
� phase exhibits an allotriomorphic structure, 
as for PFA-26, the plastic strain tends to be 
concentrated on the �A formed along the 
prior-austenite grain boundary. Therefore, if the 
�A phase grows in a coarse-grained 
morphology, the �A phase may play a key role 
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in the fracture behavior of the Fe-C alloy, as 
reported in the literatures [18, 19].     
For PFW-57, on the other hand, we can 
observe that the �w plates in the unit-cell 
mainly plastically deform. That is, the plastic 
strain is not localized on the grain boundary, 
but is distributed almost uniformly in the 
unit-cell along the �w plates. Furthermore, the 
magnitude of plastic strain in the unit-cell for 
PFW-57 is lower than that for PFA-26.  

 
Figure 6.  Macroscopic nominal stress vs 

nominal strain relationship. 

 
From these results, we conclude that the strain 
redistribution due to the formation of 
fine-grained �w plates causes the increase in 
toughness, as shown in the experimental 
studies [18]. On the other hand, in PFL-54, 
when the coarse-grained �w structure is present 
in parallel formations across the austenite grain 
and the spacing between the plates is large, the 
plastic strain is predominantly distributed on 
the plates even though the � phase exhibits the 
�w structure. 
 

 
Figure 7.  Distribution of equivalent plastic 

strain in the unit-cell. 
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