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Abstract 
Dynamic recrystallization (DRX) exhibits very 
complicated phenomena including both 
hardening due to the accumulation of 
dislocations and softening due to the 
nucleation and growth of recrystallized grains.
In other words, the mechanical behaviour 
during the DRX process is closely related to the 
evolution of microstructures and dislocations. 
In this study, the phase-field model, which 
enables the simulation of microstructural 
variation during the DRX process, is developed 
by generalizing the multi-phase-field method 
proposed by Steinbach et al. The hardening due 
to the accumulation of dislocations and the 
nucleation criteria of recrystallization are 
expressed theoretically by employing the 
method proposed by Guo et al. In order to 
confirm the basic performance of the 

developed model, a simulation of single-grain 
growth is performed. As a result, the 
characteristic variation of the grain boundary 
migration rate due to the dislocation-density 
change and a good agreement with the 
theoretical result were observed. Furthermore, 
the DRX process including nucleation is 
simulated for a regular-hexagonal grain 
structure. It is confirmed that a typical stress – 
strain curve with multiple peaks can be 
reproduced by the prediction of microstructural 
evolution. 
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1 Introduction 
It is well known that when a low-to-medium 
stacking fault energy (SFE) metal is deformed 
under a high-temperature environment, 
dynamic recrystallization (DRX) occurs [1, 2]. 
DRX is distinguished from static 
recrystallization (SRX), which occurs in 
post-deformation annealing. Although both 
recrystallization processes have many common 
characteristics, the most different point is that 
for DRX, the dislocation density in the 
recrystallized grains increases with continuous 
deformation, while for SRX, it is constant. 
Since DRX exhibits complicated phenomena 
such as hardening due to deformation and 
softening due to recrystallized grain growth, or 
the simultaneous evolution of dislocations and 
microstructures over time, the construction of a 
numerical model that enables the evaluation of 
microstructural evolution is essential, in 
addition to experimental observation. 
As a numerical model for DRX, the cellular 
automaton (CA) method [3-9] has been 
successfully applied to the microstructural 
investigation of the DRX process. Guo et al. 
[7-9] have proposed a simulation method that 
couples the CA method to a theoretical model, 
in which the hardening by the accumulation of 
dislocations is expressed by equations and the 
softening by grain boundary migration due to 
recrystallization is simulated by the CA method. 
However, since the CA method describes the 
states in terms of discrete variables, it is 
problematic when applied to modeling 
curvature-driven growth [10].  
The phase-field method was first used to model 
dendrite formation [11, 12], and over the past 
decade, it has been applied to various problems 
of material science. The phase-field method 
can easily reproduce complicated shapes and 

morphologies without tracking the location of 
the interface, since the interface migration is 
described by the time evolution of an 
additional order parameter, or the phase field. 
In this model, the time and scale can be treated 
as the real values, and the effect of curvature is 
explicitly included. 
In this study, we establish a phase-field model 
for the DRX process, in which the 
multi-phase-field method proposed by 
Steinbach et al. [14] is generalized to simulate 
the grain boundary migration driven by stored 
energy, or the softening process. The hardening 
process is modeled by the equations employed 
by Guo et al. [6, 7].  
 

 
Figure 1.  Schematic stress-strain curves 

under hot working. 
 
2 Dynamic Recrystallization 
Figure 1 schematically illustrates typical 
stress-strain curves under hot working. In 
metals with a high-SFE, such as Al and �-Fe, 
the stress increases monotonically with 
increasing strain, because the dynamic 
recovery is rapid and the dislocation density 
does not achieve a critical value that originates 
the nucleation of recrystallization. On the other 
hand, the low- or medium-SFE metals, such as 
Cu, Ni and �-Fe, exhibit DRX. The stress-strain 
curve for the low- or medium-SFE metals is 
characterized by the Zener-Holloman 
parameter Z, defined by the following 
equation: 
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� �RTQZ exp��� ,                    (1) 
where ��  is the strain rate, T is the 
deformation temperature, Q is the activation 
energy and R is the gas constant. As shown in 
Fig. 1 (b), under the conditions of low Z, i.e., 
low��  or high T, the stress-strain curve has 
multiple peaks at low strain, and under high Z, 
i.e., high��  or low T, it exhibits a single peak. 
For both cases, when the stress attains a critical 
value �c which is somewhat less than the 
maximum stress �max, the nucleation of 
recrystallization is generated. Since the 
dislocation density of the recrystallized grain is 
considerably smaller than that of the deformed 
material, softening occurs with the growth of 
the new grain. Finally, the steady-state stress �s 
is achieved. 
 
3 Theoretical Model 
We employ the model of dislocation evolution 
and nucleation used in Refs. [6] and [7]. 
3.1  Dislocation evolution model 
The variation of the dislocation density � with 
respect to the strain � is given by 

��
�
�

21 kk
d
d

	� .                    (2) 

Here, the first term of the right hand side 
expresses the work hardening, and k1 is a 
constant that represents hardening. The second 
term is the dynamic recovery term, and k2 is a 
function of temperature T and strain rate �� . 
The flow stress � is related to the dislocation 
density as follows: 

��
� b~� ,                        (3) 

where � is a dislocation interaction coefficient 
of around 0.5, 
 is the shear modulus, and b~  
is the magnitude of the Burgers vector. 
In our numerical model, the local dislocation 
evolution is expressed by Eq. 2, and the 
macroscopic true stress is calculated from Eq. 
3 by changing � to an average dislocation 

density �ave over a numerical region.  
The following formulations are performed in 
order to identify k1 and k2 in Eq. 2. From Eqs. 2 
and 3, we can obtain the following equation, 

��
�



��
�

�
	�

s

kb
d
d

�
��


�
� 1~

2
1

1              (4) 

where �s is the steady-state stress and is 
expressed as 

21
~ kkbs �
� �                   (5)    

From the gradient of the stress-strain curve at � 
= 0, k1 can be determined. The steady-state 
stress �s is related to the strain rate ��  and 
temperature T as 

�
�



�
�
� 	�

RT
QA actm

s exp���                (6) 

where A and m are constants and Qact is the 
activation energy. When �s is determined from 
Eq. 6, k2 can be obtained from Eq. 5. 

skbk ��
 12
~

�                      (7) 
 
3.2  Nucleation model 
Since the nucleation originates at high-angle 
boundaries, it is assumed that the nucleation of 
DRX only occurs at the original and 
recrystallized grain boundaries. In this case, the 
nucleation mechanism reduces to bulging 
nucleation. Considering that the nucleation 
originates when the dislocation density reaches 
a critical value �c, �c can be calculated on the 
basis of the bulging mechanism as follows 
[13]: 

31

2~3
20

�
�



�
�
��

�
���

LMbc
� ,                   (8) 

where � is the grain boundary energy, L is the 
mean free path of the dislocation, M is the grain 
boundary mobility and � is the dislocation line 
energy calculated by 2~bc
� � , in which c is a 
constant of the order of 0.5. The mean free path L 

is calculated from ��KL � , where K is a 

constant of about 10.  
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4 Phase-Field Model  
4.1  Phase-field equations for DRX 
We generalize the multi-phase-field model 
proposed by Steinbach et al. [14] to simulate 
the DRX phenomenon, in which the 
recrystallized grain boundary migration is 
driven by the stored energy.  
We consider a system containing N different 
grains �1,��2,�....�N. Phase field �� takes a value 
of 1 inside the �th grain, and is 0 inside other 
grains, and 0 <��� < 1 at the grain boundary. �� 
is not an independent variable and must satisfy 
following condition: 

1
1

��
�

N

�
�� .                             (9) 

Here, we use the free-energy functional 

dVfW
a

dVfF

V

N N

e

V

� � �

�

�
�
�

�

�
�
�

�
��

�
�
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�
�

�
����	�

�

� ��1 1

2

2� ��
������

�� ����

,  

(10) 
where a�� and W�� are the gradient coefficient 
and the barrier height, respectively, which are 
related to the interface energy �ij and the 
interface thickness  ij. fe is the bulk free-energy 
density and a function of �1,��2,�....�N, i.e., 

� �Nee ff ��� �,, 21� . 

Now, we define a step function �a as  

!
"
# $$

�
elsewhere0

  101
�

� �
�

�
� .                  (11) 

Using this step function, the number of locally 
present phases is expressed as 

� ��
�

�
N

txn
1

,
�

�� .                       (12) 

Using Eq. 12, Eq. 9 reduces to 

1
1

��
�

n

i
i� .                            (13) 

By introducing the Lagrange multiplier %, 
�1,��2,�....�N can be treated as independent 

variables.  

� �
&
'
(

!
"
#

�
�



�
�

�
	��)

�
V

n

i
i dVF 1

1
�%            (14) 

Since �i is a non-conserved order parameter, 
the time evolution equation of �i can be 
expressed as follows: 

%
 �
 � 		�

i
i

F�

,                      (15) 

where i

�

�  denotes the time evolution without 
considering a specific time scale.  
Furthermore, an interface field *ij is newly 
defined as follows: 

jiij ��* 	�  (i < j),                   (16) 

where *ij = –*ij. Substituting Eq. 16 into Eq. 
13, we obtain 

��
�
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iji n
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By the definition of the interface field *ij, or 
using Eq. 16, the time evolution of *ij becomes 

ji
jiij

FF
 �
 

 �
 ��* �	�	�

���

.             (18) 

We can see from Eq. 18 that the time evolution 
of *ij is independent of the Lagrange multiplier 
%. From Eq. 17, 

�
�

�
n

j
iji n 1

1 ��

*� .                       (19) 

Substituting Eq. 18 into Eq. 19, we have 

�
�

�
�
�
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The functional derivative  F/ �i is calculated 
as 

� �
i

e
n
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k
ik

kik

iii

faW

ffF

�
��

�� �
 

+
+

���
�



��
�

�
���

+�
+

�	
+
+

�

�
,
�1

2
2

2

.       (21) 

Taking into account Eq. 21 and the mobility 
M�

ij, the time evolution equation of �i is 
obtained as 
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Here, we select 

ijji
j

e

i

e Eff
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+
+

	
+
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8 ,             (23) 

where -Eij is the difference in bulk free-energy 
density between grains i and j. The factor 8/. is 

needed to satisfy � � 118
1

0
�	� ���. d . Finally, 

we obtain 
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(24) 
4.2  Phase-field parameters 
The parameters aij, Wij and M�

ij in Eq. 24 are 
related to the material constants. Let us 
consider the case of N = 2 and n = 2. For �1 = �, 
�2 = 1–�, a = a12 = a21, W = W12 = W21, M� = 
M�

12 and -E = -E12, the time evolution 
equation of �1 = � is written as 

� � � � ��
�

��
� -	�		�� EWaM ��

.
���

�

1821
2

22� . 

(25) 
In same way, from Eq. 10, we obtain 

� � � ��
&
'
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!
"
#

�	��� dVfWaF e��� 1
2

2
2

.    (26) 

In a one-dimensional problem, Eqs. 25 and 26 
respectively reduce to 

� � � � �
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From Eq. 27, the phase-field profile under the 
equilibrium condition can be obtained by 

setting �� = 0 and -E = 0 as follows: 

�
�
�

�

�
�
�

�
��
�



��
�

�
	� x

a
W2sin1

2
1� ,              (29) 

where � = 1/2 at x = 0. Solving Eq. 29 for x,  

� �12sin
2

1 �	� 	 �
W

ax .              (30) 

Since the interface region is 0 < ��< 1, the 
interface thickness   is calculated as 

W
a
2
. � . (31) 

The grain boundary energy � is obtained from 
Eq. 28 by setting fe = 0 as 

.�
24

Wa
� .                        (32) 

Considering the condition that a grain 
boundary with the equilibrium phase-field 
profile migrates with a constant velocity V, we 
obtain following equation from Eq. 27: 

E
W

aMV -�
2

4
.

� .                  (33) 

Comparing Eq. 33 and the grain boundary 
mobility M, 

W
aMM
2

4
.

�� .                    (34) 

From Eqs. 31, 32 and 34, the phase-field 
parameters are related to the material 
parameters as follows: 

 
�4

�W ,  �
.

22
�a , MM

 
.�

4

2

� .   (35) 

Generalizing Eq. 35 to the multi grain problem,  

 
� ij

ijW
4

� , ijija  �
.

22
� , ijMM

ij  
.�

4

2

� . 

(36) 
where aij = aji, Wij = Wji, M�

ij = M�
ji, �ij = �ji and 

Mij = Mji, and we set   ij =  . 
The driving force of the migration of the 
recrystallized grain boundary is expressed by 
the dislocation density difference between 
grains i and j, or 

� �ijijE ��� 	�- ,                    (37) 

where -Eij = –-Eji. The dislocation density 
increases with continuous deformation by Eq. 2. 
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When nucleation occurs, the dislocation 
density in the new grain is set to an initial 
value �0. We assume that the dislocation 
density in a grain is uniform, i.e., �i is 
uniformly distributed in the region of �i > 0 
and �i = �0 when � = 0.  
 
5 Numerical Results  
On the basis of Refs. [15] and [7], we employ 
the following material parameters for OFHC 
copper: � = 0.5, 
 = 42.1 GPa, b~ = 0.256 nm, 
A = 2.78×10-45, m = 7.58, Qact = 261 KJ/mol, R 
= 8.314 J/mol·K, k1 = 3.71×108 1/m, � = 0.625 
J/m2, c = 0.5 and K = 10. The grain boundary 
mobility M is expressed by 

�
�



�
�
�	�

RT
Q

kT
DbM bb exp

~ ,   (38) 

where  b is the characteristic grain boundary 
thickness, D is the boundary self-diffusion 
coefficient, k is the Boltzmann constant and Qb 
is the boundary diffusion activation energy. We 
use  bD = 5.0×10-15 m3/s, k = 1.381×10-23 J/K 
and Qb = 104 KJ/mol [7].  
Equation 24 is solved by the finite difference 
method, and the grid size -x = 5 
m and the 
interface thickness   = 7-x are employed. The 
simulations are carried out under T = 775 K, 
�� = 2×10-3 1/s, and �0 = 109 1/m2. 
 
5.1  Single-grain growth 
During the DRX process, the driving force of 
grain boundary migration changes with 
continuous deformation. Here, we perform 
fundamental simulations in which one 
recrystallized grain grows in a deformed 
material with a crystal orientation, and we 
compare numerical and theoretical results to 
clarify the validity of the proposed phase-field 
model for DRX. 
A nucleus is placed at the origin of the square 

numerical model. The radius of the nucleus is 
set to R0 = 5.5 
m, because it must satisfy R0 > 
�/Ec to avoid the shrinking of the grain due to 
the curvature effect. The critical dislocation 
density �c calculated by Eq. 8 is 8.82×1014 
1/m2, then, the stored energy Ec = 0.12 MPa. 
Figure 2 shows the variation of grain boundary 
migration velocity with time. The result 
denoted by a broken line is for a constant 
stored energy Ec. This corresponds to the SRX 
process. In this case, the velocity is slow at the 
beginning of the growth due to the curvature 
effect then gradually become faster. On the 
other hand, the result for DRX indicates a peak 
velocity at approximately 18 s. Figure 3 shows 
the variation of dislocation densities in the 
deformed material and recrystallized grain, and 
the driving pressure with time. It can be 
observed that the dislocation density in the 
deformed material increases slightly, whereas 
that in the recrystallized grain increases rapidly 
from �0. Consequently, the driving pressure 
calculated by the difference in the dislocation 
densities also reaches a peak. At the balance 
between the driving pressure and the curvature 
effect, the peak value of the migration velocity 
is determined. The solid circles in Fig. 2 
indicate the theoretical values calculated from 
V = M(-Estore – �/R). It is, therefore, confirmed 
that the numerical result perfectly agrees with 
the theoretical value.  
 
5.1  Multi grain nucleation and growth 
The DRX simulation for a polycrystal metal 
with regular hexagonal grains and a mean grain 
size is 78 
m is performed here. The size of the 
computational domain is 223.5×129.0 
m 
(447×258 grid) and the number of original 
grains is six. Periodic boundary conditions are 
employed at all boundaries. 
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Figure .  Variations of grain boundary 

migration velocity with time. 

 

Figure .  Variations of dislocation densities 

and driving pressure with time. 
 
First, a preliminary calculation is carried out to 
create the initial polycrystal structure. Figure 4 
shows time slices during the preliminary 
calculation. The six nuclei are placed in the 
calculated positions and grow inside a base 
material driven by a uniform driving force. 
Since the grain boundary energies are all 
identical, six regular-hexagonal grains can be 
obtained. 
The DRX simulation considering nucleation is 
performed using the created regular-hexagonal 
grain structure. The nuclei are generated on the 
grid satisfying the conditions � > �c and 

6.0
1

2 $�
�

n

i
i� . The nucleation rate is assumed to 

be 22.2 /s in the computational area. Here, as 
mentioned in the previous section, the required 
size of the nucleus is much larger than that of 
an actual nucleus. Therefore, we use M� = M�/4 
and Estore = 4 Estore at all points and set the 
radius of the nuclei to R0 = 5-x. Figure 5 
demonstrates the time evolution of the 
microstructure. When the dislocation density 
reaches the critical value �c, the recrystallized 
grains are nucleated at the grain boundaries and 
grow toward the center of the original grains. 
Figure 6 shows the variation of dislocation 
densities with the progress of deformation. It 
can be seen that the dislocation density inside 
the recrystallized grains is lower than that in 
the original grains and increases with the 
continuous deformation. The stress – strain 
curves are illustrated in Fig. 7. The broken line 
shows the result obtained using Eqs. 2 and 3 
and the solid line shows the present result. The 
open circles in Fig. 7 correspond to those in 
Figs. 5 and 6. We can observe typical multiple 
peaks caused by the softening due to the 
growth of recrystallized grains and the 
hardening due to the accumulation of 
dislocations. As a result, it is concluded that the 
developed phase-field model can simulate the 
DRX process including the softening and 
hardening.  
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Figure .  Time slices during computation to 

create initial polycrystal structure. 
 

 

Figure .  Microstructure evolutions � = (a) 

0.102, (b) 0.114, (c) 0.126 and (d) 0.138. 
 

 

Figure .  Variations of dislocation density. 

 

 

Figure .  Stress-strain curves. 

 
6 Conclusions   
We have established a phase-field model for 
the DRX process, in which the 
multi-phase-field method proposed by 
Steinbach et al. was generalized to simulate the 
grain boundary migration driven by stored 
energy. The hardening was modeled using the 
theoretical equations employed by Guo et al.
The basic single-grain growth and the DRX 
process resulting from the regular hexagonal 
grain structure were simulated. It was 
confirmed that the developed phase-field 
model can simulate the DRX process. 
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