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Abstract  In this study, a coupled model that estimates recrystallization kinetics and structure is developed 
by employing a phase-field method and crystal plasticity theory. In this model, the deformation subgrain 
structure which is the initial structure of recrystallization simulation is predicted from the stored energy 
and crystal orientation calculated from crystal plasticity finite element simulation. Then, based on the 
predicted subgrain structures, static recrystallization are simulated by multi-phase-field method taking 
account of the orientation dependence of boundary energy and mobility. The model developed in this 
study enable to consider the deformation structures and the spontaneous nucleation through the abnormal 
subgrain growth, unlike the conventional model driven by the stored energy and using the nucleation 
criteria.  
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INTRODUCTION  
 

The development of recrystallization model is essential to predict the recrystallization texture, 
microstructure and kinetics during annealing. There are some computational models for recrystallization 
[1], such as vertex or network model, Monte Carlo Potts model [2], cellular automata model [3] and 
phase-field model [4, 5]. In all these models, the introduction of the realistic deformation microstructure 
which is the initial structure of recrystallization simulation is indispensable for the accurate estimations of 
recrystallization process. Therefore, the deformation microstructures are obtained experimentally [6] or 
numerically [7].  
There are two types of recrystallization model: One is the grain growth model driven by the stored energy 
[4, 6, 7], in which the deformation microstructure is characterized by the crystal orientation and stored 
energy. Since this model needs nucleation criteria, the calculated recrytallization kinetics and structure 
change depending on the predefined nucleation conditions. The other model describes grain growth by the 
balance of grain boundary energies, and considers the subgrain structure in which there are no dislocations 
inside individual subgrain [5]. Although this model requires smaller computational grids and much 
computational cost comparing to the first model in order to express subgrain microstructures, by 
introducing the misorientation dependence of boundary energies and mobility to the model, the natural 
nucleation of recrystallized grains is enabled through the abnormal grain growth [8].  
In this study, we develop a coupled model for static recrystallization of a phase-field method that describes 
second model mentioned above and crystal plasticity finite element method. Since the normal crystal 
plasticity finite element simulation never give subgrain microstructures, the subgrain structures are 
predicted from crystal orientation and stored energy calculated by the deformation simulation. The 
multi-phase-field model of Steinbach et al. [9] is employed as a grain growth model and the misorientation 
dependency of grain boundary energies and mobility are introduced into the phase-field model.  



This paper consists of five chapters: Following this introduction, a multi-phase-field model for grain 
growth and algorithm for the efficient computation are described. Next, we explain the procedure of 
recrystallization model developed in this study. In chapter of numerical results, first, the effects of 
misorientation and inhomogeneous deformation on subgrain growth are confirmed by using simple 
polycrystalline model, and then the results for every step following the developed recrystallization model 
are shown in detail. And, we discuss the capability of the developed model against the predictability of real 
processes. Finally we conclude this study. 
 
PHASE-FIELD MODEL 
 

In grain growth simulation during recrystallization, the multi-phase-field model of Steinbach et al. [9] is 
employed. This model has an advantage that the phase field parameters, such as gradient coefficient and 
phase field mobility, can be perfectly related to the grain boundary energy and mobility with 
misorientation dependency. Furthermore, this model removes some difficulties in the treatment of triple 
points or higher order interactions. The computational difficulties caused by using many phase field 
variables are overcome by employing an efficient algorism of Kim et al. [10]. 
1. Multi-phase-field model Considering a system containing N different grains φ1, φ2,.... φN, the free 
energy functional can be taken as 
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where, aαβ and Wαβ are the gradient coefficient and the height of double well potential between α-th and 
β-th grains. The phase field φα takes a value of 1 inside the α-th grain, 0 inside other grains, and 0 < φα < 1 
at grain boundary. φα is not an independent variable and must satisfy the following condition: 
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Here, we define a step function σα with σα = 1 if  0 < φα < 1 and σα = 0 elsewhere. Using this step function, 
the number of locally present phases n is expressed as 
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Using Eq. 3, N in Eqs. 1 and 2 can be replaced by n.  
Following Ref. 9, the time evolution equation of phase field is obtained as 
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where i, j and k are the local grain number from 1 to n at a numerical grid point.  
2. Phase field parameters The phase-field parameters are related to the material parameters as follows 
[11]: 
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where δ is the grain boundary thickness and γij and Mij are the grain boundary energy and mobility between 
i-th and j-th grains. To introduce the misorientation dependency of grain boundary energy and mobility, 
the following equations are used [8]. 
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Here, Δθij is the misorientation between i-th and j-th grains, γm and Mm are respectively the boundary 
energy and mobility at Δθij = Δθm which is the misorientation when the boundary becomes a high angle 
boundary. The variations in grain boundary energy and mobility with misorientation expressed by Eqs. 6 
and 7 are illustrated in Fig. 1.  
 

          
 
        Fig. 1  Misorientation dependency of grain boundary energy and mobility expressed by Eqs. 6 and 7 

 

3. Algorithm for efficient computation   As we can see from Eq. 4, we do not have to solve Eq. 4 on the 
grid points with n = 1 and it is sufficient to save the values of not N but n phase fields. Furtheremore, by 
introducing the following algorithm [10], we can solve Eq. 4 very efficiently.  

(1) Solve Eq. 4 for n phase fields. 
(2) During (1), if φi at previous time step is zero and the calculated increment Δφi has a minus value, i-th 
phase field is put away from the phase field group on the grid point. And, steps (1) and (2) are repeated 
until all phase fields satisfied above condition are removed. 
(3) The phase fields are rearranged in the order of largest to smallest. Phase fields from the largest until 
nφ -th are recorded. Here, nφ is a predefined maximum number of the recorded phase field. 

(4) The phase fields are replaced by following ∑
=

=
φ

φφφ
n

j
jii

1

* so as to satisfy 1
1

* =∑
=

φ

φ
n

i
i . 

(5) If a phase field is not saved at a grid point of (l, m) and its value at grid points of  (l±1, m±1), or the 
nearest four neighbors, is not zero, the phase field is added to the phase field group on the grid (l, m). 
Therefore, the number of phase fields solved in the step (1) sometime becomes more than nφ.  

Although this algorithm basically follows Ref. [10], the iteration in steps (1) and (2) is added to achieve 
higher accuracy.  
 
RECRYSTALLIZATION COUPLED MODEL 
 

When we obtain the stored energy Estore from subgrain structures measured experimentally, such as EBSD 
method, we often use the equation 
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where γs is the grain boundary energy, Ds is the subgrain diameter and K is a constant depending on the 
space dimension [12]. Since, in crystal plasticity finite element simulation, the stored energy can be 
calculated by  
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where ρ is the dislocation density, μ is the shear modulus and b is the magnitude of Burgers vector, the 
subgrain diameter can be calculated as 
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where Eq. 6 is substituted. However, usually it is impossible to obtain the misorientation Δθ directly from 
crystal plasticity finite element simulation. Furthermore, in the case using triangular element in finite 
element simulation, the stored energy and crystal orientation are constant inside individual element and 
abruptly change between neighboring two triangular elements as a step function. Therefore, the smoothing 
operation is carried out using the equation  
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where θ(l, m) is the smoothed orientation at a grid point (l, m) shown in Fig. 2, q is the number of grid points 
used in the smoothing operation (or the number of grid points located inside dashed circle with radius Rs in 
Fig. 2), θp is the crystal orientation at local point p, and wp is a weight function expressed by 1/ rp , where rp 
is the distance between points (l, m) and p. The same operation is performed for stored energy. From the 
smoothed orientation, the amount of local orientation gradients θ∇  are calculated at all grid points. 

Assuming sDθθ ∇=Δ  as shown in Fig. 3, from Eq. 10, the misorientation Δθ can be calculated using the 

local orientation gradient θ∇  and smoothed stored energy Estore as  
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Here, we summarize the recrystallization model developed in this study: 
(1) Crystal orientation and stored energy of deformed polycrystalline material are calculated through 
crystal plasticity finite element simulation. 
(2) The crystal orientation and stored energy are smoothed on the regular grids for phase-field 
simulation following Eq. 11. 
(3) The amount of local orientation gradient ( ) ( )22 yx ∂∂+∂∂=∇ θθθ  is calculated on all grid 
points. 
(4) The misorientation Δθ is calculated by Eq. 12 using the smoothed stored energy and local orientation 
gradient. 
(5) Subgrain size at all grid points is determined using Eq. 10. 
(6) Nuclei to generate the subgrain structure are seeded on the regular grids for phase-field simulation 
taking into account the calculated subgrain size. 
(7) Subgrain structures are prepared by performing a normal grain growth simulation from the nuclei. 
(8) Recrystallization phase-field simulation is carried out from the initial subgrain structure. 

 

          
 

        Fig. 2  Schematical illustration of relationship between triangle finite element and regular grids 
 

 



          
 
        Fig. 3  Schematical illustration of relationship between smoothed orientation and predicted subgrain 

 
 

 
NUMERICAL RESULTS 
 

1. Abnormal subgrain growth  The effects of misorientation and inhomogeneous deformation on the 
subgrain growth are investigated using simple polycrystalline model. Figure 4 show the initial subgrain 
structures used here. There are four hexagonal grains that are classified by coloring and of which 
boundaries are high-angle boundaries. Here, periodic boundary conditions are applied to the all sides of 
computational domain. Model A has 718 subgrains with almost same diameter of Dave = 0.94 μm. Models 
B and C have two kinds of subgrain size. In model B with 657 subgrains, only central red grain has small 
subgrains of Dave = 0.80 μm and the other three grains have large subgrains Dave = 1.07 μm. On the other 
hand, in model C with 846 subgrains, central red grain has large subgrains of Dave = 1.07 μm and the other 
grains have small subgrains of Dave = 0.80 μm. The computational domain size is 500Δx ×394Δx where 
grid size is Δx = 0.05 μm. The other conditions are as follows: the interface thickness δ = 7Δx, interface 
energy γ = 1 J/m2, time increment Δt = 0.0075 s and grain boundary mobility M = M0exp(-Q/kT) where 
pre-exponential factor M0 = 6.2x10-6 m2/Ns, activation energy Q = 2.08x10-19 J, Boltzmann constant k = 
1.38x10-23 J/K and temperature T = 800 K [13]. 
Figures 5 (a), (b) and (c) show the time slices of subgrain microstructual evolution for Model A with 
different misorientations Δθ. In Fig. 5 (c), normal grain growth is observed, because all boundaries are 
high-angle boundary. On the other hand, in Fig. 5 (a), only grain boundaries with high-angle 
misorientation migrate, or the abnormal grain growth is observed. In Fig. 5 (b), intermediate behaviors of 
(a) and (c) can be observed: although the migrations of initial high-angle grain boundaries are prominent, 
the coarsening of subgrains inside initial grain is also occurred.     
Figures 6 (a) and (b) demonstrate the time evolution of subgrain structures for Model B and C, 
respectively. In Models B and C, the deformation inhomogeneity is simply modeled by changing the 
subgrain size. Although , in Fig. 5 (a), the high-angle grain boundaries migrate into both grains with same 
subgrain structures, in Figs. 6 (a) and (b), those migrate only into the grain with smaller subgrains or larger 
deformation. Therefore, we can confirm that the present model can reproduce the experimental fact that 
recrystallization occurs much faster in highly deformed grain than lower one.  
 

 
(a) Model A                                   (b) Model B                                  (c) Model C 

Fig. 4  Initial subgrain structures with four hexagonal grains  



 

 
(a) Δθ = 4 degree 

 
(b) Δθ = 7 degree 

 
(c) Δθ > 15 degree 

Fig. 5  Time evolution of subgrain structures for Model A. t = 7.5, 75, 150, 225, 300 and 375 s from left. 
 
 
 

 
(a) Model B 

 
(b) Model C 

Fig. 6  Time evolution of subgrain structures for models B and C in the case of Δθ = 4 degree. t = 7.5, 75, 
150, 225, 300 and 375 s from left. 

 

2. Recrystallization simulation  Following the procedure of recrystallization model described in previous 
chapter, recrystallization simulation taking into account deformation microstructures is performed and the 
results in each computational step are shown in detail.  
 

 
        Fig. 7  Crystal orientation distributions at 50% compression by crystal plasticity finite element 

simulation [14] 
 

Figure 7 shows the crystal orientation distributions at 50% compression calculated by crystal plasticity 
finite element simulation. The used crystal plasticity theory and numerical conditions are shown in Ref. 
[14]. In Fig. 7, the solid lines indicate the grain boundaries before deformation. Here, we use the square 
region of 80 μm x 80 μm in Fig. 7 as a computational domain for recrystallization simulation. This region 
has 626 triangle elements and is divided into 800 x 800 finite difference grids. The close-up views of square 
region in Fig. 7 are illustrated in Fig. 8. Since, in crystal plasticity finite element simulation, crossed 
triangle elements are employed, (a) crystal orientation and (b) stored energy are colored element by 



element. The misorientation shown in Fig. 8 (c) indicates the orientation difference of neighboring two 
triangle elements. 
 

                                 

 
(a)                                     (b)                                     (c) 

        Fig. 8  Close-up views of square region in Fig. 7: (a) crystal orientation θ, (b) stored energy Estore and 
(c) misorientation Δθ 

 

Figures 9 (a) and (b) are the smoothed orientation and stored energy, respectively. The smoothing is carried 
out using Eq. 11 with Rs = 3Δx. In this case, since the Rs is relatively small, the smoothed regions are 
limited around sides of triangular elements. Next, the magnitude of orientation gradient at grid point (l,m) 

is calculated by ( ) ( ) ( )( ) ( ) ( )( )2
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using smoothed stored energy shown in Fig. 9 (b) and calculated gradient θ∇ , the misorientations on all 
grid points can be obtained from Eq. 12. The calculated misorientation distributions are shown in Fig. 9 (c). 
Here, the minimum misorientation is set to be 4 degrees, because we need very small numerical grid in 
order to reproduce small subgrain structures caused by small misorientation angle, as can be seen from Eq. 
10. Comparing Fig. 9 (c) to Fig. 8 (c) , the area with high-angle misorientation increases in Fig. 9 (c). As the 
reason, it is considered that the highly localized orientation gradient at around sides of triangular elements 
causes such high misorientation through Eq. 12. Finally, the subgrain size on all grid points are determined 
by Eq. 10 using smoothed stored energy and calculated misorientation. The subgrain diameters calculated 
at all grid points are the range 0.97 to 3.46 μm.  

                                  

 
 (a)                                     (b)                                     (c) 

Fig. 9  Smoothed results of (a) crystal orientation θ and (b) stored energy Estore and (c) misorientation 
Δθ calculated by Eq. 12 

 

The nuclei are sowed so as that the circular subgrains with diameter Ds of grid points selected randomly fill 
the computational domain. The distributes of created 2229 nuclei are shown in Fig. 10 (a). From these 
nuclei, the normal grain growth is simulated to obtain the subgrain structures. Figures 9 (a), (b) and (c) are 
the time slices during the simulation. Figures 9 (c) and (d) are the predicted subgrain structures, where (d) 
indicates grain boundaries and crystal orientations. From Fig. 9 (d), the crystal orientations are almost same 
with Fig. 9 (a). The small subgrains are observed at the area where the stored energy is high. Therefore, it is 
confirmed that the plausible subgrain structures can be predicted by the proposed model. 



 
(a)                                    (b)                                    (c)                                    (d)  

Fig. 10  (a) Nuclei sowed randomly, (b) during grain growth simulation to prepare subgrain structure,  
(c) predicted subgrain structures and (d) its crystal orientations 

 

The static recrystallization simulation is carried out from the predicted subgrain structures shown in Fig. 9 
(d). The computational domain size is  80 μm x 80 μm (800 x 800 grids) with grid size Δx = 0.1 μm. Zero 
Neumann boundary conditions are applied for all sides of computational domain. The other conditions are 
as follows: the interface thickness δ = 7Δx, interface energy γ = 0.6 J/m2, time increment Δt = 0.05 s and 
grain boundary mobility M = M0exp(-Q/kT) where pre-exponential factor M0 = 6.2x10-6 m2/Ns, activation 
energy Q = 2.08x10-19 J, Boltzmann constant k = 1.38x10-23 J/K and temperature T = 800 K [13].  
Figure 11 shows the time evolution of subgrain structures and the growth of recrystallized grains during 
annealing. At the beginning of simulation, the high-angle grain boundaries become smooth owing to their 
curvature, as can be seen in Fig. 11 (a) with comparing to Fig. 10 (d). After then, some grains with 
high-angle boundaries grow abnormally and become recrystallized grains. In particular, large 
recrystallized grains grow into upper and lower grains, because their two grains are deformed intensely and 
have small subgrain structures. The large deformation area on the diagonal line of computational domain is 
also preferred nucleation site. However, since the deformation is localized around the diagonal line,  the 
growth rate of recrystallized grains is slower than those of upper and lower regions. In the large initial 
subgrain regions in Fig. 10 (d), no recrystallization occurs in this simulation period. As a result, the 
spontaneous nucleation by abnormal grain growth and the recrystallized grain growth depending on the 
deformation structures are observed in the present model developed here. 
 

 
(a)                              (b)                              (c)                              (d)                              (e) 

Fig. 11  Time evolution during static recrystallization simulation at (a) 300, (b) 1500, (c) 3000, (d) 4500 
and (e) 6000 s 

 
 
 

CONCLUSIONS 
 

We developed a coupled model for static recrystallization of the phase-field method and crystal plasticity 
finite element method. In this model, the subgrain structures are predicted from crystal orientation and 
stored energy calculated by crystal plasticity finite element simulation. The multi-phase-field model 
proposed is employed as a grain growth model and the misorientation dependency of grain boundary 
energy and mobility are introduced into the phase-field model to reproduce abnormal grain growth which 
enable spontaneous nucleation. By performing a series of procedure, it is confirmed that the proposed 
model can predict the desired subgrain structures depending on the stored energy and crystal orientation 
distribution. Furthermore, during static recrystallization simulation, spontaneous nucleation by abnormal 
grain growth and the growth of recrystallized grain depending on the deformation microstructures are 
confirmed. 
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