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Summary. A new crystal plasticity phase-field model is developed to simulate microstructure
evolution with elastoplastic deformation. In this paper, three-dimensional simulation of the
growth of precipitates during solid phase transformation is performed. And, it is demonstrated
that the distribution of stress and dislocation density around the growing precipitates can be
predicted by the developed phase-field model.

1 INTRODUCTION

Recently, the phase-field (PF) method has been actively studied as a powerful tool to simulate
microstructure evolutions in various materials. In particular, Guo et. al. [1] proposed the
elastoplastic PF models to simulate the microstructure evolution with both elastic and plastic
deformations. However, since their elastoplastic PF model is based on the J2 flow theory and,
therefore, can not describe changes of crystal orientation and dislocation density during the
microstructure evolution. In order to conduct precise numerical simulation of the microstructure
evolution with the elastoplastic deformation, such as formation of lath martensite structure,
using the PF method, it is essential to enable us to evaluate the changes of crystal orientation
and dislocation density due to the microstructure evolution in frame of the PF theory.

In this study, a new crystal plasticity phase-field model (CP-PFM) is developed by coupling
the phase-field microelasticity (PFM) theory [2] with the crystal plasticity theory. Furthermore,
using the developed CP-PFM, the three-dimensional simulation of the growth of precipitates
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during solid phase transformation is performed. And, it is demonstrated that the CP-PFM can
predict the evolution of the precipitates and investigate the plastic deformation behavior around
the precipitates including the change of dislocation density.

2 CRYSTAL PLASTICITY PHASE-FIELD MODEL

The total free energy of the system is defined by the Ginzburg-Landau free energy functional,
which is the sum of chemical free energy Gchem, elastic strain energy Gelastic and gradient energy
Ggrad as, Gtotal = Gchem + Gelast + Ggrad. Here, the chemical free energy Gchem is represented
by the Landau polynominal expansion of the phase-field variable φi. φi is defined as φi = 1
in the i th precipitate and φi = 0 in the parent phase and other precipitates. In the interface
region, φi gradually changes from 1 to 0.

In this CP-PFM, the elastic strain energy is evaluated by the PFM theory proposed by
Khachaturyan [2]. According to the PFM theory, the elastic strain energy can be described by
the following equation.
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Here, εel
ij , εc

ij , ε0ij are the elastic strain, the total strain and the eigen strain, respectively. The
total strain is defined as the sum of the homogeneous strain ε̄c

ij and heterogeneous strain δεc
ij as,

εc
ij = ε̄c

ij+δεc
ij . The homogeneous strain is determined from the macroscopic boundary condition.

On the other hand, the heterogeneous strain is calculated by solving the mechanical equilibrium
equation using the Fourier transformation. And, the heterogeneous strain can be obtained by
the inverse Fourier transformation of the following heterogeneous strain in the Fourier space.

δε̂c
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1
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Here, Ω−1
mi(~n) = Cijmnnnnj and ~n = ~k/

∣∣∣~k∣∣∣ is the unit vector in the Fourier space.
The eigen strain in Eqn. (1) is assumed to be the sum of the transformation strain εtrans

ij and
the plastic strain εp

ij evaluated by the crystal plasticity theory as, ε0ij = εtrans
ij + εp

ij . The trans-
formation strain is defined as a linear function of the phase field variable and the transformation
strain due to formation of m th variant of the precipitates as, εtrans

ij =
∑N

m=1 ε00ij (m)φm. The plas-

tic strain is calculated by time integration of the following plastic strain rate; ε̇p
ij =

∑n
a=1 P

(a)
ij γ̇(a).

Here, γ̇(α) and P
(a)
ij are shear strain rate and the Schmid tensor on the a th slip plane. In this

study, we employ the following equation [3].
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Here, the evolution of the critical resolved shear stress g(a) is assumed to be the modified Bailey-
Harsh equation based on the strain-gradient crystal plasticity theory [4].
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Figure 1: Evolution of the precipitates during phase transformation.

The evolution of the precipitates is described by solving the following time-dependent Ginzburg-
Landau (TDGL) equation for the phase field variables.

∂φi
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= −Mφ
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+
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)
(4)

3 SIMULATION RESULTS

In this study, the three-dimensional simulation of the growth of precipitates with the elasto-
plastic deformation is performed. The cubic computational domain of 100 × 100 × 100 µm3

is meshed with 643 regular computational grids. Thus, the mesh size is ∆x = 1.56 µm. Three
initial nuclei of the precipitate are set to be formed in the computational domain randomly. It
is assumed that the phase transformation induces isotropic dilatational transformation strain.
Furthermore, we assume that the precipitate and parent phase have FCC crystal structure and,
thus, the twelve slip systems are considered. The TDGL equation is solved with the finite dif-
ference method and the fast Fourier transformation under the periodic boundary condition. For
the numerical simulation, the following physical values and parameters are used: the mobility of
phase field Mφ = 1.0, Young’s modulus E = 77.0 GPa, Poasson’s ratio ν = 0.375, the referencial
shear strain rate γ̇

(a)
0 = 0.1 s−1, the strain rate sensitivity factor m = 0.05, the initial dislocation

density ρ0 = 1010 1/m−3 and time increment ∆t = 0.002 s.
Figure 1 shows the growth of the precipitates during the phase transformation. The precipi-

tate i is visualized by the profile of φi ≥ 0.6 (i = 1, 2, 3). All precipitates grow with time and
the grain boundary is formed between different precipitates. Figure 2 indicates the evolution of
equivalent stress with the growth of the precipitates on the {100} cross-section for x = 40∆x.
It is shown that the stress concentrates in the parent phase near the interface and the high
stress region migrates with the growth of the precipitates. Furthermore, since we employ the
strain-gradient crystal plasticity theory, the changes of SS and GN dislocation densities in the
microstructure can be evaluated. The evolution of the dislocation density ρa =

∑12
n=1 ρ(n) around

the precipitates is shown in Fig. 3. Here, ρ(n) is calculated by the sum of the SS dislocation
density and the GN dislocation density as, ρ(n) = ρ

(n)
SS + ‖ρ(n)

GN‖. From the Fig. 3, the plastic
deformation occurs in the high stress region between the precipitates. Thus, it can be observed
that the high dislocation density is exhibited in the vicinity of the grain boundary.
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Figure 2: Evolution of equivalent stress on the {100} cross-section for x = 40∆x.
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Figure 3: Evolution of dislocation density on the {100} cross-sections for x = 40∆x.

4 CONCLUSIONS

In this study, a new CP-PFM was developed by coupling the PFM theory with the crystal
plasticity theory to simulate the microstructure evolution with the elastoplastic deformations.
And, the three-dimensional simulation of the growth of the precipitates was performed by using
the developed CP-PFM. The simulation results demonstrated that the high stress region is
formed around the precipitates due to the dilatational transformation strain. And, the high
dislocatin density was exhibited near the grain boundary. From these results, it can be concluded
that the developed phase-field model can simulate not only the microstructure evolution during
the phase transformation, but also the plastic deformation behavior during the microstructure
evolution including the changes of the crystal orientation and the dislocation density.
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