Phase-Field法によるマルテンサイト変態の3次元シミュレーション

Three-dimensional Simulation of Martensitic Transformation by Phase-Field Method

○ 山中晃徳 · 東工大院

Akinori YAMANAKA, Graduate School of Science and Engineering, Tokyo Institute of Technology 高木知弘·京工繊大院

Tomohiro TAKAKI, Graduate School of Science and Technology, Kyoto Institute of Technology

冨田佳宏·福井工大工

Yoshihiro TOMITA, Faculty of Engineering, Fukui University of Technology

Key Words : Phase-Field Method, Martensitic Transformation, Plastic Deformation Three-dimensional Simulation, Microstructure Evolution

1 緒言

鉄鋼材料における相変態においては、変態ひずみによ り生じる応力場が組織形成過程に大きな影響を与えてお り、組織形成とそれに伴う弾塑性変形挙動を表現できる Phase-Field モデルがいくつか提案されている⁽¹⁾.しかし ながら、より定量的に組織形成過程を再現するためには、 組織形成過程における結晶のすべり変形や結晶方位変化 を評価可能な Phase-Field モデルの構築が求められる.そ こで本研究では、Khachaturyan が提唱する Phase-Field Microelasticity 理論⁽²⁾ および結晶塑性理論に基づく、結 晶塑性 Phase-Field モデルを構築し、Fe-Ni 合金における マルテンサイト変態による組織形成過程の3次元シミュ レーションを行う.さらに、変態中に生じる塑性変形が組 織形成過程に及ぼす影響について検討する.

2 結晶塑性 Phase-Field モデル

系全体の全自由エネルギーは、化学的自由エネルギー G_{ch} 、勾配エネルギー G_{gr} および弾性ひずみエネルギー G_{el} の和として定義され、次式で表される.

$$G = G_{ch} + G_{qr} + G_{el} \tag{1}$$

ここで、化学的自由エネルギーは、秩序変数 ϕ_i の Landau 多項展開式で表されるものとする ⁽³⁾.

$$G_{ch} = \int_{V} \Delta f \left\{ \frac{a}{2} \sum_{i=1}^{3} \phi_{i}^{2} - \frac{b}{3} \sum_{i=1}^{3} \phi_{i}^{3} + \frac{c}{4} \left(\sum_{i=1}^{3} \phi_{i}^{2} \right)^{2} \right\} dV(2)$$

ここで、 ϕ_i (i = 1, 2, 3) は i 番目の兄弟晶 (以後, バリア ント i と呼ぶ)を持つマルテンサイト相の存在確率を表す 秩序変数であり、 $0 \le \phi_i \le 1$ の値をもつ. Δf は変態駆動 力の大きさであり、オーステナイト相とマルテンサイトの 自由エネルギー密度差を表している. 勾配エネルギーは 界面エネルギーの等方性を仮定すると、次式で表される.

$$G_{gr} = \frac{\lambda}{2} \int_{V} \left(\sum_{i=1}^{3} |\nabla \phi_i|^2 \right) dV \tag{3}$$

ここで, λ は勾配エネルギー係数である.

弾性ひずみエネルギーは、Phase-Field Microelasticity 理論より、以下のように表される⁽²⁾.

$$G_{el} = \frac{1}{2} \int_{V} C_{ijkl} \epsilon^{el}_{ij} \epsilon^{el}_{kl} dV \tag{4}$$

$$\epsilon_{ij}^{el} = \epsilon_{ij}^c - \epsilon_{ij}^0 \tag{5}$$

ここで、*C_{ijkl}* は弾性定数テンソルである.式 (5) で示し

た弾性ひずみ ϵ_{ij}^{el} は、力学的平衡方程式 $\sigma_{ij,j} = 0$ をフー リエ変換を用いて解くことにより求められる全ひずみ ϵ_{ij}^{e} と固有ひずみ ϵ_{ij}^{0} の差として定義される.本研究では、マ ルテンサイト変態中に塑性変形が生じることを表現する ため、固有ひずみを変態ひずみ ϵ_{ij}^{t} と塑性ひずみ ϵ_{ij}^{p} の和 とし、次式で表現する.

$$\epsilon_{ij}^0 = \epsilon_{ij}^t + \epsilon_{ij}^p = \sum_{m=1}^3 R_{ik} R_{jl} \epsilon_{kl}^{00}(m) \phi_m + \epsilon_{ij}^p \qquad (6)$$

ここで、 R_{ij} は回転テンソルであり、母相の結晶方位を表す Euler 角度の関数として定義する. マルテンサイト変態に よる変態ひずみは、次式で表す Bain の格子ひずみ $\epsilon_{ij}^{00}(m)$ と秩序変数 ϕ_i の線形関数として定義する.

$$\epsilon_{ij}^{00}(1) = \begin{bmatrix} \epsilon_3 & 0 & 0\\ 0 & \epsilon_1 & 0\\ 0 & 0 & \epsilon_1 \end{bmatrix}$$
(7)

$$\epsilon_{ij}^{00}(2) = \begin{bmatrix} \epsilon_1 & 0 & 0\\ 0 & \epsilon_3 & 0\\ 0 & 0 & \epsilon_1 \end{bmatrix}$$
(8)

$$\epsilon_{ij}^{00}(3) = \begin{bmatrix} \epsilon_1 & 0 & 0\\ 0 & \epsilon_1 & 0\\ 0 & 0 & \epsilon_3 \end{bmatrix}$$
(9)

ここで, ϵ_1 および ϵ_3 は, Fe-Ni 合金の場合には, それぞれ $\epsilon_1 = 0.1322, \epsilon_3 = -0.1994$ で与えられる ⁽⁴⁾.

式 (5) の塑性ひずみは, 結晶塑性理論により定義される 塑性ひずみ速度 $\dot{\epsilon}_{ij}^p$ を時間積分することによりに評価する. 塑性ひずみ速度 $\dot{\epsilon}_{ij}^p$ は, 結晶の n 個あるすべり系のうち, ある a 番目のすべり系におけるせん断ひずみ速度 $\dot{\gamma}^{(a)}$ お

Fig. 1 Computational model for polycrystalline sturcture of austenite phase.

よび Schmid テンソル $P_{ij}^{(a)}$ を用いて次式で表される ⁽⁵⁾.

$$\dot{\epsilon}_{ij}^p = \sum_{a=1}^n P_{ij}^{(a)} \dot{\gamma}^{(a)}$$
(10)

$$P_{ij}^{(a)} = \frac{1}{2} \left(s_i^{(a)} m_j^{(a)} + s_j^{(a)} m_i^{(a)} \right)$$
(11)

 $s_{j}^{(a)}$ と $m_{i}^{(a)}$ は、それぞれすべり系aのすべり面に対して 平行および垂直な方向の単位ベクトルである。せん断ひ ずみ速度 $\dot{\gamma}^{(a)}$ は、Pan らの指数則を用いて表現する $^{(6)}$.

$$\dot{\gamma}^{(a)} = \dot{\gamma}_0^{(a)} \frac{\tau^{(a)}}{g^{(a)}} \left| \frac{\tau^{(a)}}{g^{(a)}} \right|^{\frac{1}{m}-1} \tag{12}$$

ここで、 $\tau^{(a)}$ はすべり系 aに対する分解せん断応力であ り、 $\tau^{(a)} = P_{ij}^{(a)}\sigma_{ij}$ で表される. $g^{(a)}$ は臨界分解せん断応 力であり、すべり変形に対する抵抗を表現する.本研究で は、塑性変形による加工硬化挙動を表す $g^{(a)}$ の発展方程 式として、せん断ひずみ γ に依存したモデルを用いる.す なわち、臨界分解せん断応力の増分は次式で表されるもの とする.

$$\dot{g}^{(a)} = \sum_{b=1}^{n} h_{ab} \left| \dot{\gamma}^{(b)} \right|$$
 (13)

ここで、 $h_{ab}(\gamma)$ は、すべり系同士の相互作用を表現する硬 化係数行列であり $h_{ab}(\gamma) = qh(\gamma) + (1-q)h(\gamma)\delta_{ab}$ で表 現する. q は潜在硬化の大きさを表すパラメータである. 本研究では、 $h(\gamma)$ は、 $h(\gamma) = h_0 sech^2 \{h_0\gamma/(\tau_s - \tau_0)\}$ を 用いる. なお、 $\gamma = \sum_{a=1}^n |\gamma^{(a)}|$ で与えられる. h_0, τ_s, τ_0 はそれぞれ、初期硬化係数、飽和分解せん断応力、初期臨 界分解せん断応力である.

以上より評価される,全自由エネルギー G が組織発展 とともに減少することを仮定すると,マルテンサイト相の 時間発展は,次式の ϕ_i の時間発展方程式で表される.

$$\frac{\partial \phi_i}{\partial t} = -M \frac{\delta G}{\delta \phi_i} = -M \left(\frac{\delta g_{ch}}{\delta \phi_i} + \frac{\delta g_{el}}{\delta \phi_i} - \epsilon^2 \nabla^2 \phi_i \right) \quad (14)$$

ここで, *M* はマルテンサイト相と母相の界面のモビリティーである.

3 解析モデル

本研究では、Fe-Ni 合金におけるマルテンサイト変態に よる組織形成過程を再現する. 図1に、オーステナイト母 相の多結晶構造のモデルを示す. 解析領域は、一辺 32 µm の正方形領域であり、64×64 の規則格子で分割する. 全 方向周期境界条件を適用するので、解析領域内には10 個 の結晶粒が存在する. それぞれの結晶粒の方位は、ランダ ムに Euler 角度を設定することで表現する. 温度は、255 K で一定とし、等温変態におけるマルテンサイト組織の 形成過程を再現する. さらに、マルテンサイト相の核形成 サイトとなる結晶欠陥を表現するために、解析領域中央付 近の結晶粒界上に微小な塑性ひずみを与える. 式(14)の 時間発展方程式は時間、空間ともに差分法を用いて離散化 して、数値解析する. 応力場の評価には、高速フーリエ変 換を用いる.

Fig. 2 Evolution of martensite phase (variant 2).

4 解析結果および考察

図2に、バリアント2のマルテンサイト相の時間発展を 示す.図中には、母相の結晶粒界と $\phi_2 \ge 0.5$ を満たす領 域としてバリアント2を示している.この結果より、母相 中に配置した結晶欠陥から形成したマルテンサイト相は、 時間とともに成長している.また,最初にマルテンサイト 相が形成した結晶粒以外においても、変態によって生じた 内部応力場に誘起されて次々とマルテンサイト相が形成 している. さらに、図 2(d)(e) の矢印で示すように、マル テンサイト相は自身が形成することで生じる弾性ひずみ エネルギーが最小となるように、プレート状もしくは板状 の形態を呈していることがわかる.図3には、3つのバリ アントおよび母相を含むマルテンサイト組織の形態を示 す.この図より、変態ひずみによって生じる弾性ひずみエ ネルギーを最小化するように、結晶粒ごとに異なる2つの バリアントが層状組織を形成していることがわかる. な お,本稿では変態中に塑性変形が生じない系での解析結果 を示したが、講演会当日は塑性変形を伴うマルテンサイト 変態のシミュレーション結果について報告する.

5 参考文献

- (1) 上原, 辻野, 日本機械学会論文集 A 編, 72, (2006), 849-855.
- (2) A. G. Khachaturyan, Theory of Structural Phase Transformation in Solids, Wiley and Sons, New York, (1984).
- (3) A. Artemev, Y. Wang, A. G. Khachaturyan, Acta Materialia, 48, (2000), 2503-2518.
- (4) 西山, マルテンサイト変態 基本編, 丸善, (1971), 260.
- (5) R. J. Asaro, J. R. Rice, J. Mech. Phys. Solid., 25, (1977), 309-338.
- (6) J. Pan, J. R. Rice, Int. J. Solid. Struct., 19, (1983), 973-987.