多結晶体の変形挙動におよぼす結晶方位分布の影響評価

京都工芸繊維大学 〇岡本 卓也 [学] 高木 知弘 秋山 雅義 Effects of Crystal Orientation Distribution on Deformation Behavior of polycrystalline Metal

Takuya OKAMOTO, Tomohiro TAKAKI and Masayoshi AKIYAMA

1. はじめに

通常使われる金属材料は、ミクロンオーダーの多結晶構造 を有している.このような材料に一様な変形を与えると、マ クロ的には均一変形であるが、ミクロ的にみると結晶粒毎に 方位が異なっており,これに起因して各粒内においては不均 ーな変形が生じる.この変形は特に粒界近傍において高くな る傾向があり、亀裂などの欠損の生成箇所となり、最終的に は材料のマクロな強度を支配する.このように、多結晶金属 材料を適切に使用するためには、粒内の不均一変形をある程 度把握しておく必要がある. この最も強力な評価手法は、結 晶塑性論を導入した有限要素シミュレーションであろう.し かしながら、一般の研究者が結晶塑性有限要素法を使いこな すためにはそれなりの時間と能力が必要であり、また、その 都度計算を行うことは非常に効率が悪い. そこで、結晶粒内 部に生じる不均一変形に対して影響を与える因子と粒内の最 大応力などの関係をデータベースとして蓄積しておくことは 非常に有意義であると考える.

そこで本研究では、このようなデータベース化を検討する ことを目的とし、2次元2すべり系結晶塑性有限要素法を用 いることで、粒内の不均一変形に及ぼす結晶方位分布および 粒形状の影響評価を行う.

2. 解析モデル

文献 [1] のひずみ勾配結晶塑性理論を用いた2 すべり系2 次元平面ひずみ有限要素シミュレーションを行う. 材料はア ルミを対象とし、各物性値は文献 [2] に示したものを用いて いる.図1は有限要素シミュレーションに用いた多結晶モデ ルを示している. 190.48×164.94 µm²の領域を 40×60 の crossed triangles 要素で分割し、等価粒径 $D = 50 \mu m 0.23$ 個の 正六角形粒を配置している.結晶方位θは図1右図のように 定義している.ここで、中心の粒をGrain A、その第一近接粒 を Grains B, 第2 近接粒以降の粒を Grains C とする. また, Grain A内の不均一変形を評価するために、評価点として Pl ~ P6 を設ける. 評価値は、各粒界辺の中心に位置する節点 を含む要素の平均値として算出する.通常,3 重点が最も応 力が集中し易い領域である. 今回は比較的データが整理し易 いであろうと考えられる粒界辺中心を評価対象点とする.こ れらの評価点では、変形が Grain A の粒形状と、接する粒の 方位差の影響が大きいであろうと推測する.境界条件は、左 右端を shear free, 下端の y 方向の変位を拘束, 上端の y 方向 に一様変位速度を与え、y 方向への引張りシミュレーション を行う.

3. シミュレーション

本研究では、下記3種類のシミュレーションを行う.

- Grain A と Grains B の結晶方位を固定し、Grains C の結 晶方位をランダムに変化させることで、第2近接以遠の 粒が Grain A の変形に及ぼす影響を評価する.
- II. Grains B の結晶方位を全て一定(θ=15°)とし, Grain
 A の結晶方位を0 ~ 90 度まで変化させることで, Grain
 A の粒形状の影響を評価する.
- III. Grains B の6個の粒のうち1つの粒の方位をⅡで設定した値θ=15°とし、残りの粒の方位を任意に設定し、Ⅱの結果と比較することでGrains B 間の相互作用の影響を検討する.

3・1 シミュレーションI <第2近接粒の影響> 図2は, Grain A と Grains B の結晶方位を $\theta_A = 45^\circ$, $\theta_{B1} = 60^\circ$, $\theta_{B2} = 10^\circ$, $\theta_{B3} = 80^\circ$, $\theta_{B4} = 26^\circ$, $\theta_{B5} = 73^\circ$, $\theta_{B6} = 25^\circ$ と固定し, Grains C の方位をランダムに変化させた場合の, 公称ひずみ 0.1 までの各評価点における主すべり系上のせん断ひずみ(以降, 最大せん断ひずみと呼ぶ)の変化を示している. ここで, Grains C のランダム方位を4通り変化させている. 図2より, 多少のばらつきはあるが, 公称ひずみ 0.05 程度までは4回の シミュレーションいずれも最大せん断ひずみが同様に増加し ており, 第2近接以遠の粒の影響を受けないことがわかる. 変形が大きくなると4回のシミュレーションの値の差が大き くなっており, 遠方の粒の影響が及んでいることが考えられる. 以上の結果より,おおよそ公称ひずみ 0.05 までであれば, Grain A の変形は第一近接粒 Grains B のみの影響を受けるとい える.

strain for four simulations

3・2 シミュレーションⅡ<粒形状の影響> Grain

A の粒形状が Grain A の変形に及ぼす影響をみるために, Grains B の結晶方位を全て θ =15°一定とし, Grain A の結晶 方位を 0 ~ 90°まで 5°ずつ変化させる. 図3は Grain A の 結晶方位を変化させたときの各評価点における最大せん断ひ ずみの変化を示している. 図より, 評価点 P1, P3, P4, P6 およ び, P2 と P5 の変化がそれぞれ比較的良く似ていることがわ かる. Grain A の形状は正六角形であり, 荷重方向に対して P2 と P5 のある辺が平行であり, それ以外の辺は 60°の角度 をなしており, 荷重方向に対する粒形状の影響が Grain A 内 の変形に顕著に現れていることがわかる.

3・3 シミュレーションⅢ<Grains B間の相互作用> 前 節のシミュレーションIIでは、Grains B の結晶方位を全て θ = 15°一定として Grain A の粒形状の影響をみた. ここでは, Grains B の結晶方位を $\theta_{B1} = 60^\circ$, $\theta_{B2} = 10^\circ$, $\theta_{B3} = 80^\circ$, $\theta_{B4} =$ 26°, $\theta_{B5} = 73^{\circ}$, $\theta_{B6} = 25^{\circ}$ とし, 1つだけをIIの $\theta = 15^{\circ}$ と して Grain A の方位を変化させ各点の最大せん断ひずみの変 化を評価する.図4はその結果を示している.例えば、P1の 図は, Grain B1の方位を15°とし, Grain Aの方位を0~90° まで変化させた際の評価点 P1 における最大せん断ひずみの 変化である.また図3の結果も同時に示しており、この2つ の結果が全く同じになれば、P1の変形はGrain B1にしか影響 を受けないということになる. 図4より、P2の傾向はやや異 なるが、全体的に図3の結果と変化の傾向は似ていることが わかる.しかしながら、最大せん断ひずみの絶対値は変化し ており、例えば P1 に関しては Grain B1 に加えて、その両隣 の Grain B2 と Grain B6 の変形の影響がおよんでいることが考

3. おわりに

本研究では、多結晶構造の結晶粒内における不均一変形に 対して何が最も支配的な因子になるのかを、結晶塑性有限要 素シミュレーションにより評価した.この結果、結晶粒の大 きさが全て同じであれば、変形が5%程度と小さい場合、第2 近接以遠の粒の影響は小さいことを示した.また、粒形状と 第一近接粒の方位関係が不均一変形に大きく寄与しているこ とを明らかにした.この場合、第1近接の両隣の粒も変形の 大きさに寄与していることがわかった.

参考文献

- 1) 比嘉吉一, 澤田幸秀, 冨田佳宏, 機論 A 69 (1999) 523.
- 高木知弘,山中晃徳,比嘉吉一,冨田佳宏,機論A 73 (2007) 482.