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ABSTRACT 
 

A numerical model and computational procedure for static recrystallization are developed 
using a phase-field model coupled with crystal plasticity theory. The microstructure and 
accumulated dislocation density during deformation of a polycrystalline metal are simulated 
using finite element method based on the strain gradient crystal plasticity theory. Phase-field 
simulation of the nucleation and growth of recrystallized grain is performed using the 
crystallographic orientation and stored energy calculated by crystal plasticity finite element 
simulation. Through this computational procedure, we can get the final recrystallization 
microstructure taking the deformation microstructure into consideration. 
 
 
1. Introduction 
 
The microstructures formed during annealing are significantly affected by the pre-
deformation microstructures, since the recrystallization originates from dislocation cells or 
subgrains which appear after deformation and subsequently the recrystallized grain growth 
occurs driven by the stored energy resulted from the dislocation accumulated during 
deformation. Recently, the numerical studies using Monte Carlo Potts model [1] and cellular 
automata model [2] based on the data measured by EBSD analysis are made on static 
recrystallization. However, to enable more systematic investigations for recrystallization 
texture, it is key to develop the computational procedure without using experimental data. 

In this study, we develop a phase-field model which can simulate the nucleation and 
growth of recrystallized grain. Here, the crystallographic orientation and dislocation density at 
the deformation of polycrystalline metal are simulated using finite element method based on 
the strain gradient crystal plasticity theory [3].  
 
 
2. Numerical Procedure 
 
The numerical procedure developed here consists of following three steps: 
< Step. 1> The crystallographic orientation and dislocation density after deformation of 

polycrystalline metals are calculated by crystal plasticity finite element simulation. 
< Step. 2 > The calculated data are mapped onto a regular lattice used in phase-field 

simulation. The stored energies calculated from dislocation density are smoothed 
on the lattice, because phase-field method requires the continuous driving forces. 



< Step. 3 > Phase-field simulation during recrystallization is performed in which the 
nucleation and growth of recrystallized grain are reproduced. 

 
 
3. Models and Results 
 
By following the procedure shown in previous chapter, crystal plasticity theory, data mapping 
method and phase-field method employed in this study are briefly explained together with 
numerical results.  
 
 

3.1 Strain gradient crystal plasticity 
 
The crystal plasticity finite element method based on a strain gradient theory of rate 
dependent plasticity [3] is used to examine the microstructure and dislocation distribution 
during deformation of polycrystalline metals. Here, the critical resolved shear stress on slip 
system (a) is assumed to be a Bailey-Hirsch type function: 
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where, ( )ag0  initial value of ( )ag , a constant, m elastic shear modulus, b~  the magnitude of 
Burgers vector, abϖ  interaction matrix, and ( )bρ  accumulated dislocation density. The 
accumulated dislocation density is the sum of the densities of SSD and GND. The evolution 
of SSD is expressed by the balance between the production rate of dislocations and the 
annihilation by dynamic recovery. The density of GND is calculated from the gradient of 
shear strain on slip system (a). Since the hardening equation, Eqn. 1, includes the strain 
gradient term through the dislocation density, it is possible to express the grain size effects. 
    Figure 1(a) shows the polycrystal model with 23 grains where the average grain diameter is 
115.5 µm. This model is divided into 64x64 regular crossed-triangle elements and is 
compressed at a strain rate 10-3 s-1 as a 2-slip plane strain problem. Figure 1(b) and (c) 
illustrate the crystallographic orientation and stored energy after 50% compression, 
respectively. The stored energy Estore is calculated by 2~5.0 bEstore ρµ= , where ρ is the total 
dislocation density of all slip systems.  
 

 
Figure 1. Crystallographic orientation (a) before deformation and (b) at 50% 
compression, and (c) stored energy. Solid lines indicate initial grain boundaries. 

 
3.2 Data mapping 

 



The data computed by crystal plasticity finite element simulation, i.e. crystallographic 
orientation and stored energy, are mapped onto the regular lattice of phase-field simulation. 
The relationship between triangle elements used in finite element simulation and lattice used 
in phase-field simulation is shown in Fig. 2. The regular lattice size is 0.4 µm and triangle 
elements are a part of Fig. 1 (b). First, the crystallographic orientation and stored energy on 
lattice are determined as a value inside an element. In other words, the values of lattice 
located inside a triangle element are all identical. Next, the misorientation on lattice is 
determined as a maximum value among the four misorientations between the two neighboring 
lattices, i.e., ∆θ1, ∆θ2, ∆θ3, and ∆θ4, represented in Fig.2. Then, the stored energies mapped 
onto the regular lattice are smoothed using Winslow’s smoothing method: 
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where, Estore smoothed stored energy on lattice i, Ej stored energy before smoothing on lattice 
j, wj weight represented as an inverse of distance between lattice i and lattice j, and m the 
number of lattice inside a considering circle with radius r. In this study, r = 3∆x is selected 
where ∆x is lattice size. Finally, the crystallographic orientation, misorientation and smoothed 
stored energies on all regular lattices are determined. Figures 3 (a) and (b) show the 
distributions of smoothed stored energy and misorientation, respectively, for the regions 1 
(332.8 x 64 µm2) and 2 (268.8 x 76.8 µm2) illustrated in Fig.1.  
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Figure 2. Triangle elements for crystal plasticity finite element simulation and regular 
lattice for phase-field simulation. 

 

 
Figure 3. (a) smoothed stored energy and (b) misorientation. 1 and 2 indicates region 1 
and 2 of Fig.1, respectively. 

 
3.3 Phase-field simulation 

 
By using the data mapped onto regular lattice, the nucleation and growth of recrystallized 
grain are simulated using phase-field method. In the present phase-field model, two order 
parameters, i.e., phase field φ which equals zero in the deformed matrix and unity in 
recrystallized grain and crystallographic orientation θ, are employed. The time evolved 
equations for the order parameters are as following: 
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where, ( )φf  a free energy density expressed by double well type function: 
( ) ( )( ) ( )φφφ WqEpf store +−= 1  with ( ) ( )23 61510 φφφφ +−=p  and ( ) ( )22 1 φφφ −=q , 

δσ6=W energy wall height related to interface energy σ and interface thickness δ, 
δσα 3=  gradient coefficient, πα Ws 2= , αφ 62WmM =  mobility for φ where m is a 

mobility of grain boundary migration, and ( )( ) φθ φ MpM −= 1  mobility for θ. Equations (3) 
and (4) are solved by an adaptive finite element method [4]. 
    Figure 4 shows the initial nucleus sits, the growth process, and final recrystallization 
microstructure. The site saturated nucleation model is used, in which the following nucleation 
criteria are assumed: (1) the high angle grain boundary of more than 15 degree, (2) the stored 
energy of more than 0.6 MPa, (3) the orientation of the nucleus is presented in the deformed 
structure, and (4) the minimum distance between the two neighboring nuclei is 10∆x. The 
initial radius of nucleus is set to 3∆x. From Fig.4, it is observed that, in region 1, the 
nucleation and growth of recrystallized grains occur inside the grain before deformation, 
while, in region 2, the recrystallized grains originate only from grain boundary. 
 

 
Figure 4. Time evolutions of recrystallized grain growth and final recrystallization 

microstructures. Adaptive meshes are illustrated only for results at 500s. 
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