フェーズフィールド凝固シミュレーションへの アダプティブ有限要素法の適用

Phase-Field Simulation of Solidification using Adaptive Finite Element Method

高木 知弘(神戸大・海科) 冨田 佳宏(神戸大・工)

Tomohiro TAKAKI, Kobe University Yoshihiro TOMITA, Kobe University FAX: 078-431-6286 E-mail: takaki@maritime.kobe-u.ac.jp

Phase-field method is successfully applied to the study of the solidification. Since the method must allow the continuous of the phase-field inside the narrow solid-liquid interface, very fine meshes are needed. In this study, the adaptive finite element method is introduced in order to conduct the phase-field simulation efficiently. The degree of freedom of the hanging node, which occurs on the side of an element, is eliminated by conducting the matrix operation.

1. 緒言

凝固過程におけるデンドライト形成など,形態発展 問題のシミュレーション手法としてフェーズフィールド 法が注目されている.フェーズフィールド法は界面位置 を明確に決める必要が無く,比較的容易に界面発展を記 述することができる.一方で,非常に狭い界面領域内で フェーズフィールドの急峻な分布を許容する必要がある ため,非常に小さな計算格子を必要とする.本研究では, アダプティブ有限要素法をフェーズフィールド法に適用 することにより,凝固シミュレーションの効率化を図る ことを目的としている.

2. アダプティブ有限要素法

Warren ら¹⁾によって提案された二元合金の凝固問題 に対するフェーズフィールドモデルを採用する(詳細は 文献 [1,2] を参照).

空間は有限要素法,時間はクランク・ニコルソンの中 央差分法を用いることで離散化を行うと,時間t + dtに おけるフェーズフィールド ϕ^{t+dt} は次の連立一次方程式 を解くことにより得ることができる²⁾.

$\left(\frac{1}{dt}\left[K_{\phi}^{1}\right] + \frac{1}{2}\left[K_{\phi}^{2}\right]\right)\left\{\phi^{t+dt}\right\} = \left(\frac{1}{dt}\left[K_{\phi}^{1}\right] - \frac{1}{2}\left[K_{\phi}^{2}\right]\right)\left\{\phi^{t}\right\} + \left\{f_{\phi}\right\}$ (1)

ここで,マトリクス $[K_{\phi}^{1}] \geq [K_{\phi}^{2}]$ は,それぞれ熱伝導方程式でいう熱伝導・熱容量マトリクスに対応する.

要素の細分化および粗大化は図1のように,1つの親 要素を4つの子要素へ,4つの子要素を1つの親要素へ 変化させることにより行う.ある要素とその要素に隣接 する要素のサイズレベルが異なると,図1の節点10の ように要素辺上に中間節点(hanging node)が生じる.4 節点アイソパラメトリック要素を用いているため,節点

Fig. 1 Element refinement and coasening

10 においては, $\phi_{10} = 0.5(\phi_2 + \phi_5)$ を満たす必要がある. ここでは,この条件式を隣合う要素のサイズの小さい要素に対する式(1)に代入することにより,中間節点の自由度を消去する.例えば,図1右の要素2の式(1)を,

を得ることができる.同様の作業を要素4に対しても行うことで,中間節点10の自由度を消去することができる.連立一次方程式の解法としては,EBE双共役勾配法を採用している.

凝固問題では移動する界面を追従するために,要素の アダプティブ作業をダイナミックに行う必要がある.こ こでは,四分木データ構造を採用することにより,効率 的な要素の細分化および粗大化作業を行う³⁾.

3. シミュレーション結果

図 2 は文献 [1] と同様の等温過飽和凝固デンドライト生成過程をシミュレーションの対象として得られた 結果を示す¹⁾.解析領域左下に配置した結晶核から凝固 が開始し,右方向と上方向ヘデンドライトが成長して いる.ここで,界面異方性として4回対称性を用いて いるため 1/4 領域を解析対象としている.使用したア ダプティブ要素のレベル数は8(レベル0-7)としてい る.解析領域は128×128 μ m,最小要素(レベル7)の1 辺 $dx^7 = dy^7 = 0.05 \ \mu$ m,最大要素(レベル0)の1辺 $dx^0 = dy^0 = 2^7 dx = 6.4 \ \mu$ mであり,全領域を最小要素 のみで分割した場合,全要素数は6,553,600となる.要素

Fig. 2 Time evolution for isothermal solidification simulation (T = 1577.4K const., $\Delta = 0.85$, $c_0 = 0.4$ at. frac.)

Fig. 3 Variations of the number of elements and CPU time versus the number of elements

の細分化は,要素内のフェーズフィールドの平均値 ϕ_{ave} が $(0.001 < \phi_{ave} < 0.9)$ の場合に行い,それ以外の領域 では粗大化を行っている.図2(a)中には2000ステップ 時の要素分割図も示している.界面領域にレベル7の要 素が配置されていることが分かる.図3は図2のシミュ レーション過程における要素数変化,および CPU 時間 (Pentium 4, 3GHz, 1CPU) – 要素数関係を示している. シミュレーションが進むとデンドライトが成長し,界面 の面積が増加するため,要素数は2次曲線的に増加して いる.また,CPU時間と要素数はほぼ線形関係を示し ており,各ステップにおける要素アダプティブ作業が非 常に効率的に行われていることを示している.

図4は一方向凝固シミュレーションの結果を示している(詳細は文献[3]参照).初期平滑界面を左から1.6 μ mの位置に配置し,それよりも左側を固相,右側を液相としている.要素の細分化は,($0.001 < \phi_{ave} < 0.9$)または($|\nabla c_{ave}| \ge 0.01$ and $\phi < 0.001$)の場合に行い,それ以外の領域では粗大化を行っている.シミュレーションが進むと平滑界面が乱れセル形態が発生し,セルまたはデンドライトの競争的な成長を経て,周期構造を有する定常成長状態に達することが分かる.図4(e)にはデンドライトチップ先端近傍の要素分割を示している.界面領域および濃度勾配の大きい領域にそれぞれレベル7と6の要素が配置されていることがわかる.図5は要素数とチップ先端の速度変化を示している.平滑界面状態では

Fig. 4 Time evolution for directional solidification simulation

Fig. 5 Variations of the number of elemetns and tip velocity

要素数は非常に少ないが,界面が乱れると要素数とチッ プ速度が急激に増加していることが分かる.また一方向 凝固シミュレーションをより効率的に行うため,64000 ステップから2650ステップ毎に解析領域の左端を解析 対象から外している.このため,要素数がステップ状に 変化している.また,チップ先端速度は定常時に引張り 速度 V となっている.

参考文献

- J. A. Warren, Boettinger, W. J., Acta Metall. Mater., 43-2, pp.689 – 703, 1995.
- 高木知弘, 福岡俊道, 冨田佳宏: 日本機械学会論文集 A 編, 70, 128-135, 2004.
- T. Takaki, T. Fukuoka, Y. Tomita Proceedings CD-ROM of the Sixth World Congress on Computational Mechanics, 310, 2004.